当前位置:首页 > 问答大全 > 求解一道高一函数的数学题

求解一道高一函数的数学题

被浏览: 0次 2024年04月08日 06:06
热门回答(3个)
游客1

对于任意的实数b,函数f(x)=ax²+bx-b(a≠0)总有两个相异的不动点,
即对于任意的实数b,方程ax²+bx-b=x总有两个不相等的实数根.

∴方程ax²+(b-1)x-b=0(a≠0)的判别式恒大于0,
即(b-1)²+4ab>0对于任意的实数b总成立.

∴b²+2(2a-1)b+1>0恒成立,
∴4(2a-1)²-4<0,
(2a-1)² <1,
-1<2a-1<1,
0∴实数a的取值范围是0

游客2

解:
函数f(x)=ax^2+bx-b(a≠0)、
有不动点
则ax^2+bx-b=x
有ax^2+(b-1)x-b=0
(b-1)^2+4ab>0
对于b∈R恒成立
(1)当b=0时,有ax^2=x即ax(x-1)=0,只需a≠0
(2)当b>0时,a>-4(b-1)^2/4b=-(b+1/b-2)/4
a>[-(b+1/b-2)/4]max=0
当b=1/b即b=1时,取等
(2)当b<0时,a<-(b+1/b-2)/4
a<[-(b+1/b-2)/4]min=1
当b=1/b即b=-1时取等
综上:0
貌似我想复杂了,一楼很简洁了

游客3

因为f(x)=ax^2+bx-b恒有相异的不动点,
所以x=ax^2+bx-b,即ax^2+(b-1)x-b=0恒有两个相异的实数根,得

(b-1)^2-4a(-b)>0,即b^2+(4a-2)b+1>0恒成立

只有(4a-2)^2-4<0才能满足

于是,解得0故当,f(x)恒有两个相异的不动点时,a的取值范围为0